
*Email: jcabeleira@ hotmail.com

Combining Rasterization and Ray Tracing Techniques to Approximate
Global Illumination in Real-Time

João Cabeleira*
Instituto Superior Técnico

Abstract

This paper introduces a 3D rendering engine that
combines rasterization and ray tracing techniques to
approximate global illumination in real-time. Namely,
direct and indirect diffuse illumination are generated with
state of the art illumination techniques processed on the
GPU, including a new sky lighting technique that we
propose to simulate realistic ambient lighting for outdoor
environments. The illumination is then complemented
with realistic refl ections and refractions generated by an
hybrid real -time ray-tracer that performs the ray tracing
step on the CPU and the lighting on the GPU.

Keywords: global illumination, rasterization, ray tracing,
real-time, sky lighting

1. Introduction

Achieving realistic illumination in real-time is a
particularly desirable feature for applications like
videogames. However, achieving this goal is difficult
because global illumination remains too complex for real-
time rendering. For this reason, dynamic illumination in
videogames is still almost exclusively generated with local-
illumination models processed as rasterization on the GPU.

Recently, several techniques were developed to
approximate global illumination effects on the GPU. In
general, the idea behind these techniques is the adaptation
of classical global illumination algori thms to make them
execute as rasterization processes on the GPU.
On the other hand, global illumination effects like sharp
reflections are difficult to obtain using rasterization
rendering. In these cases, ray tracing is much better suited.

In this paper we introduce a rendering engine called
Serenity, that combines state of the art rasterization and
ray tracing illumination techniques to approximate global
illumination. Additionally, we also present and employ a
new sky lighting technique that provides realistic ambient
lighting for outdoor environments.
The idea behind the engine is that very advanced and
useful illumination techniques al ready exist for simulating
lighting, each one with their own advantages and
drawbacks, and which could be combined to overcome
each other limitations.
For instance, the current local illumination models and
shadowing mapping techniques are very well suited for
simulating direct lighting effects and can even match the
realism of direct lighting generated by production
renderers. On the other hand, techniques like the light
propagation volumes and screen space ambient occlusion
can approximate indirect lighting effects very efficiently on
the GPU.

Ray tracing can also be used to generate reflections and
refractions effects exclusively for the surfaces where they
are needed. The problem is that combining ray tracing
with the other rasterization based effects is not trivial due
to the differences between the two rendering techniques.
The solution we propose for this problem consists in using
deferred rendering as a unification method for the two
techniques.

2. Previous Work

Local Illumination In computer graphics, the BRDFs of
the most common reflective materials are often
approximated using analytic local illumination models like
the Phong and Oren-Nayar models. Due to their efficiency
and quality, local-illumination models became extensively
used to generate dynamic illumination in real-time, even
though they only provide a rough approximation to
lighting.

Real-time Global Illumination Some of the most
advanced and realistic lighting techniques currently used
in real-time were achieved by adapting classical global-
illumination algorithms to allow them to execute on the
GPU. For instance, a recently proposed technique called
light propagation volumes [1] [2], approximates the instant
radiosity technique [2] on the GPU using a discretization of
the scene lighting to detach the light count from the
rendering compl exity. Ray tracing also had a particular
strong influence on the development of other innovative
techniques that are already extensively used in
videogames, like screen space ambient occlusion, screen
space global illumination, depth-of-field, atmospheric
scattering, etc.

Real-time Ray Tracing In recent years, the field of real-
time ray tracing has been subject to enormous attention
and research. Ingo Wald presented an important
contribution to this field in his PhD thesis which laid the
foundations for real-time ray tracing and which remains
one of the main references in this field [4]. From this point
on, several real-time ray tracers appeared, namely the
adaptations made by Daniel Pohl to the Quake series
videogames to replace their rasterization based graphics
by ray traced ones [5]. And more recently, Jacco Bikker
also developed a real-time ray tracing engine that was
already used to create several academic videogames [6].

3. Lighting Architecture

The illumination is split by the engine into three main
components : direct illumination, indirect diffuse
illumination and ray traced illumination; see Fig. 1.
The direct illumination component is processed
completely on the GPU using the phong illumination model
and shadow mapping techniques. Indirect illumination is
also processed on the GPU using three different
techniques: the proposed sky lighting technique, light
propagation volumes and screen space ambient occlusion.
The sky lighting and light propagation volumes techniques
are described in separate in this document.

On the other hand, ray traced illumination is first
processed on the CPU, where ray tracing is performed to
find which portions of the scene are visible through a
reflection and/or refraction, the result of this process is a
G-buffer that is then sent to the GPU for lighting. The
lighting of the ray traced effects is performed using the
same direct and indirect lighting components used to
render the scene. The purpose of this method is to
maintain all the lighting processing on the GPU, even for
ray traced effects, to keep it fast and ensure visual
coherency.

Direct
Illumination

Indirect Diffuse
Illumination

Ray Traced
Illumination

Sky Lighting
Irradiance Volume

Light Propagation
Volumes

Screen Space
Ambient Occlusion

Local Illumination &
Shadow Mapping

Ray Traced
Reflections

Fig. 1: Lighting architecture

4. High Dynamic Range and Linear Space
Lighting

High dynamic range is a crucial feature of the Serenity
engine because most of its lighting comes from natural
light sources, like the sun and the sky, which can vary from
very bright day light conditions to very dark night time.
Therefore, it is important to accurately represent this wide
range of illumination conditions in order to achieve
realistic lighting. Our approach to high dynamic range is

trivial so we will not delve into its details. In essence, all
the lighting is processed and stored in high precision
buffers and then outputted to the screen using the
Reinhard tone mapping operator [7].

Another important requirement for generating physically
correct lighting is to ensure that the lighting is processed
in linear space. This is important because when simul ating
lighting in computer graphics there are several subtleties
that turn it into a non linear process and which must be
considered.
Namely, when an image is displayed in a typical monitor
the color is transformed to non linear space, following a
function called a gamma curve. To counter this effect, the
image must be transformed by the inverse of the gamma
curve before being displayed, known as called gamma
correction. Moreover, the textures that are used for
rendering are also encoded with gamma correc tion and
therefore in non linear space which also turns lighting into
a non linear process because the textures are used to
represent the albedo of surfaces.
Therefore, to generate lighting in linear space it is
necessary to perform two steps: at loading time all albedo
textures must be converted to linear space and every
rendered image must be gamma corrected before being
outputted to the screen. Current graphics rendering
hardware and APIs already provide the required
functionality to do this, by allowing loading textures in
sRGB space and converting output color to sRGB space,
which makes this process straightforward. The result is
depicted in Fig. 2, where it is shown a comparison between
non linear and linear lighting.

Fig. 2: Non linear vs linear space lighting

5. Atmospheric Scattering

The atmosphere has an important influence on earth's
illumination which should be considered in order to obtain
realistic lighting when rendering outdoor environments.
In the Serenity engine, the atmosphere affects three points
of the rendering:

 the scattered sun light originates the sky
 the color of the direct sun light varies with the amount

of light that is scattered away by the atmopshere

 the sky acts as a secondary light source of the scene,
known as sky lighting

To simulate these effects, we employ a real-time
atmospheric model that generates atmospheric scattering
effects for clear sky conditions completely on the GPU [8]
[9].
Despite running in real -time, this model is computationally
expensive, so to reduce its impact on performance we
assume that the sky depends only on the time of day

(atmospheric conditions are ignored because the model is
limited to clear sky) which allows to generate the sky once
and store it for future use. This way, the atmospheric
scattering simulation only has to be performed again to
update the sky conditions when the time of day changes
significantly.
The storage of this process is performed by mapping the
sky dome onto a 2D surface, using paraboloid mapping to
preserve the details near the horizon, and rendering the
atmospheric scattering simulation to a texture called the
sky map. Since the sky color varies so smoothly, a 256x256
texture is usually enough to capture and store the sky
color accurately; see Fig. 3. Once generated, the sky map
texture can then be applied to the sky dome to provide
color to the sky or used as a data source for the sky
lighting effect.

Fig. 3: Example of a sky map

6. Direct Lighting

Direct lighting is simulated by the Serenity Engine using
the rendering techniques that are currently used by
videogames to generate dynamic lighting. Namely, this
lighting is generated with the Phong illumination model
combined with shadow mapping.
The main difference is that we use the percentage-closer
soft shadows (PCSS) [7] which is a shadow mapping
technique that provides more realism than other
techniques since it generates soft shadows with variable
penumbra width. To demonstrate the contribution of this
technique, Fig. 4 shows a comparison between different
shadow mapping techniques, starting by sharp shadows
on the left, fixed penumbra width shadows on the middle,
and variabl e penumbra width shadows achieved through
the PCSS technique on the right.

Fig. 4: Comparison between shadow mapping techniques

Special attention was given to simulate the sun accurately
because it is the main light source in the real world. The
most important aspect of our simulation is that the color of
sun light is calculated using the engine's atmospheric

scattering model to simulate the amount of scattering and
absorption that the light suffers before it reaches the earth.
This allows for the color to vary in a very realistic way
when simulating changes in the time of day.
Additionally, shadows are also generated for this light
source by combining the cascaded shadow mapping
technique [8] with the percentage-closer soft shadows that
were previously mentioned.
Fig. 5 shows the result of direct lighting; notice that no
constant ambient term was used due to the fact that
indirect lighting will be added afterwards by the sky
lighting and light propagation volumes techniques.

Fig. 5: Direct lighting

7. Sky Lighting

When rendering outdoor scenes or indoor scenes with
access to outdoors (e.g. open doors or windows), it is
important to simulate the illumination that comes from the
sky. This kind of illumination is particularly noticeable in
shadowed areas, since the light that reaches them comes
almost exclusively from the sky.
In real-time rendering, this illumination is often faked by
giving a blue tone (or any other color depending on the sky
conditions) to the constant ambient lighting term, which is
both physically and visually inaccurate.
To simulate this lighting in a more accurate way, we
propose a new technique that runs completely on the GPU,
called sky lighting irradiance volume. This technique
generates an irradiance volume of the sky lighting that
reaches the scene while taking into account the blocking of
light caused by large objects. The volume is then used for
rendering the scene, by sampling it per pixel to obtain
interpolated irradiance of the scene.

The idea behind the use of an irradiance volume [9] [10] to
represent sky lighting is the fact that sky lighting is in
general a smooth effect, which means that it can be
processed at a reduced resolution and interpolated as
needed.
Hence, the irradiance volume represents a set of evenly
distributed points on the scene where the irradiance is
calculated. We follow the ideas of the light propagation
volumes and represent the irradiance volume with 3D
textures to allow the volume to be easily generated and
sampled on the GPU.
The irradianc e at each point is stored as 3-band spherical
harmonics, to represent colored irradiance 3 spherical
harmonics are used for each point, which amounts to 27

spherical harmonics coefficients for. The storage of these
coefficients is distributed by six RGBA textures and one
RGB texture, which amounts to the necessary 27 texture
color components per point needed for the storage.

Since sky lighting is a smooth effect, the details of the
occluders that block sky light are not very relevant, hence
their shapes can be represented by bounding shapes.
To make the ray intersection tests perform efficiently on
the GPU, we support a single and simple bounding shape
called occlusion quad. The occlusion quad shape was
designed with the purpose of providing an occluder
representation versatile enough for most scenes that
would also be efficient to test for intersections on the GPU.
Fig. 6 shows that the occlusion quad is simply a plane
defined by a center position, two vectors that point toward
its up and right sides, and two scalars that represent the
length of each vector. This simple parameterization allows
the use of a simple intersection test routine that requires
few calculations and conditionals which is important to
obtain good performance on the GPU.

V1

V2
center

{length

{

V1

lengthV2

Occlusion Quad

Fig. 6: Occlusion quad layout

Although being limited to pl anes may seem too restrictive,
in practice they are quite versatile in representing most of
the l arge occluders seen on videogames since these tend to
be buildings or any other kind of fairly geometric objects.
Fig. 7 shows the placement of occlusion quads in the
reference scene. On the left it is shown an editor view of
the scene and on the right it is showed the corresponding
occlusion quads. Their main limitation is the fact that it is
difficult to make them fit i rregular geometry like terrain.

Fig. 7: Editing occlusion quads

The process of generating the irradiance volume is done
layer by layer, where each layer is generated separately
and where each processed pixel represents an irradiance
point. At each point, the irradiance is calculated by

sampling the sky color from the sky map using a quasi
Monte Carlo method and pro jecting each sample to the
spherical harmonics basis. For each sample, this process
works as follows:

 A ray is created that starts from the position of the
irradiance point in world space coordinates and points
in the sample direction.

 The ray is then checked for intersection against the
occlusion quads. If no intersection is found then the sky
map texture is sampl ed to obtain the sky color/light
that comes from that direction and this color is
projected onto the spherical harmonic irradiance of
the point.

 To finish, the spherical harmonic coefficients are
outputted for storage on the textures that compose the
irradiance volume.

Sky

Point

The sky map has an important rol e in this process because
it avoids performing repeated expensive evaluations of the
atmospheric scattering model.
Nevertheless, sky lighting remains too expensive to
compute in real-time. Therefore, we distribute the
processing across several frames which is straightforward
to do since the processing of the volume is al ready
performed on a per layer basis. Hence, all that must be
done is to define how many layers should be generated per
frame.
In general, generating a single layer per frame provides a
good compromise between the overall time needed to
update the whole volume and its impact on the duration of
the frame. For the 32x16x23 irradiance volume used for
the reference scene, which is composed by 16 layers, the
whole volume is computed in only 16 frames without a
dramatic impact on the frame rate.

Fig. 8 shows the contribution of the proposed sky lighting
technique in comparison to the use of a constant ambient
term. Notice how the constant ambient term makes the
scene look flat while the sky lighting effect preserves the
shapes of the objects and provides realistic lighting
because each wall receives lighting from different parts of
the sky.

Fig. 8: Comparison between sky lighting (top) and constant
ambient term (bottom)

The fact that the sky lighting irradiance volume is
generated dynamically allows for dynamic time of day
changes. This is depicted in Fig. 9, which shows the
changes of day illumination, starting by a morning sunrise,
followed by noon and finished by an afternoon sunset. All
these changes were computed almost instantaneously.

Fig. 9: Time of day changes with sky lighting

8. Light Propagation Volumes

One of the most important global illumination effects, that
is required to achieve visual realism, is the inter-reflection
of diffuse lighting between surfaces. Simul ating this kind of
lighting is usually too expensive for real-time rendering.
However, a recently proposed technique, called light
propagation volumes, provides a very efficient
approximation of this kind of lighting that runs completely
on the GPU.
This technique was implemented in the Serenity engine
and provided excellent resul ts. As depicted in Fig. 10, the
technique can provide very realistic lighting, particularly
for interiors. Moreover, the light propagation volumes can
also provide glossy reflections which is a very useful
feature that increased the range of materials that can be
rendered by the engine.

Fig. 10: Contribution of the light propagation volumes

This technique also proven to be a useful complement to our sky

lighting technique. Since sky lighting comes exclusively from
above, surfaces that are oriented downwards tend to become too

dark because they cannot receive sky lighting. However, in the
real world these surfaces are rarely dark because they are also lit
by light reflected from nearby surfaces. Hence, to obtain realistic
lighting it is necessary to inject the reflected sky lighting into the
light propagation volumes. This is done by using the G-buffer as a

reflective shadow map to generate a set of sky lighting VPLs
which are then injected. The result of this process is depicted in

 Fig. 11 where on the left it is shown how outdoor lighting
looks when only sky lighting is used, and on the right it is
show the result of combining sky lighting with light
propagation volumes.

Fig. 11: Using light propagation volumes to complement sky

lighting.

9. Ray Traced Illumination

The lighting components presented so far focused on
providing only diffuse global illumination. Even though the
light propagation volumes can also provide glossy
reflections, the proposed solution still lacks the support
for sharp reflections and refractions that are important to
simulate many manmade materials like glass and polished
metal, and also natural effects like water.
Even though these effects can be approximated with
rasterization based techniques on the GPU, these are not
versatile enough to fi t every possible situation. Therefore,
the ray tracing algorithm was integrated into the Serenity
engine to take advantage of its superio r versatility for
generating accurate reflections and refractions effects for
almost every possible situation.
However, ray tracing is very different from rasterization
and much more performance expensive, hence the
challenge is to make ray traced illumination to run in real-

time and to integrate it seamlessly with the rest of the
lighting.
The solution we propose for this problem assumes that it
is possible to render the scene from any view with
deferred rendering, whether the scene is viewed directly
or from a reflection/refraction, as long as there is a G-
buffer filled with the necessary attributes of the scene.
The main difference from classic deferred rendering is that
the G-buffer is not filled by a rasterization process but by a
ray tracing one. Hence, the purpose of the ray tracer is
solely to simulate the paths of reflected and refracted view
rays and to obtain the scene attributes at their
intersections with the scene.

Although GPU ray tracing is becoming increasingly
available, we opted to perform ray tracing on the CPU
instead. This is due to the fact that the GPU is al ready
extensively used by the engine to process the other
lighting components while the CPU spends most of the
time idling, waiting for the GPU to finish processing.
Hence, we opted to take advantage of this underused
processing power to generate the ray traced lighting in
parallel while the GPU processes the other lighting
components. Moreover, implementing ray tracing for the
CPU is much more straightforward than for the GPU and
has already been proven to be suitable for videogames
while GPU ray tracing has not.

The core of the ray tracer is highly based on Wald's work
[4]. The scene geometry is partitioned and stored in a kd -
tree that is built using the Surface Area Heuristic to
optimize the split positions. The main disadvantage of
using kd-trees is that they are difficult to update in real-
time so our ray tracing implementation becomes limited to
static geometry.
Besides the geometry, the ray tracer also needs access to
the textures that define the materials properties of the
surfaces which is done by loading the textures to system
memory. T his requires special care because as stated in
the "High Dynamic Range and Linear Space Lighting"
section, all textures that represent the albedo of surfaces
must be converted from sRGB space to linear space to
allow lighting to be processed in linear space. Since there
is no automatic conversion available like when loading
them to the GPU, the conversion must be performed
manually. Additionally, mipmap levels are also generated
for each texture to allow sampling from them with
mipmap filtering.

The first step in our ray traced lighting technique is to
generate the reflected and refracted view rays that will
traverse the scene. This is done in the GPU by rendering
the refl ective/refractive surfaces with a shader that
calculates the per-pixel view vectors and applies the
corresponding optical distortions to them. The result of
this process is stored in a buffer called the ray casting
buffer that represents the reflection and refraction rays
that were generated for each pixel and where each ray is
represented by i ts origin and direction. However, since
both reflection and refraction rays share the same origin it
is only necessary to store it once.
Fig. 12 shows a rendering of the scene that highlights in
red the areas where refl ections are required and therefore
where the ray casting buffer is filled, and Fig. 13 shows the

contents of the corresponding ray casting buffer, where on
the left it is shown the origins of the rays, on the middle
the refl ection vectors and on the right the refraction
vectors.

Fig. 12: Areas of the scene where ray tracing is performed

Fig. 13: Contents of ray casting buffer

The ray casting buffer is then downloaded to system
memory to be accessed by the ray tracer. At this point, the
ray tracer extracts the ray data for each pixel, builds the
ray and traverses the scene. For each ray that intersects
the scene, the attributes of the intersected surface are
extracted from the surfaces material textures and stored
on G-buffers. The ray tracer uses two distinct G-buffers,
one for reflections and another for refractions. The
sampling from textures is performed with mipmapping to
avoid noise in the final image, using ray differentials to
calculate the amount of texel compression per pixel.
Fig. 14 depicts the contents the G -buffer used for
reflections after being filled by the ray tracer, where on the
left it is shown i ts color attributes and on the right its
normal attributes.

Fig. 14: Contents of ray traced G-buffer

The G-buffers are then uploaded to the GPU so the other
lighting components can be used to generate the lighting
for the reflected and refracted views of the scene. This is
only possible because these components were developed
as deferred rendering passes to make them fit any kind of
visualization of the scene represented by a G -buffer.
Therefore, applying this illumination to a ray traced view
is only a matter of setting the corresponding ray traced G-
buffer as a data source of the deferred rendering pipeline.
Instead of outputting the result of this process to the
screen, the resul t is instead stored in a color buffer, called
ray traced effect buffer, which allows to perform additional
operations and provides a more flexible way of combining
the ray traced lighting with the scene. Fig. 15 shows the

contents of a ray traced effect buffer used for storing the
reflection of the scene.

Fig. 15: Contents of the ray traced effect buffer used for
reflections

However, in its original state the deferred rendering
pipeline is not completely well suited for applying lighting
to ray traced views due to some differences that must be
considered between rendering directly and indirectly
views.
Namely, the cascaded shadow maps technique is not
suitable for providing sun light shadows for ray traced
views because it focus its coverage on the view frustum.
When reflections and refractions come into pl ay, areas of
the scene that are outside the view frustum may become
visible through those effects but not covered by shadows;
see Fig. 16.
To solve this problem, we devised a simplistic solution
called overlapped shado w maps, which is a generalization
of the CSM technique that provides omnidirectional
coverage; depicted in Fig. 17. Although this solution is not
optimal, since the shadow maps overlap each other
wasting some of their coverage potential, our experiments
demonstrated that using only 3 shadow maps with
512x512 resolution each provides good visual results with
a minimal impact on performance.

Mirror Mirror

Visible Area CSM Coverage

Fig. 16: CSM limitation when dealing with reflections

OSM Coverage

Mirror

Fig. 17: Overlapped Shadow Maps

Another consideration needed when applying lighting to
ray traced views is that screen space ambient occlusion
(SSAO) may provide unpredictable results and therefore

must be excluded. This is happens because SSAO relies on
obtaining data about the scene that surrounds a given
visible point by sampling neighboring pixels from the G -
buffer. However, this is only valid if the view rays are
coherent. If the rays are heavily distorted, like when
looking at a bumpy reflective surface, then the neighbor
pixels may contain information about points of the scene
that are unrel ated to the point being processed, which may
result in visual artifacts.

Combining the ray traced effects with the final image is
done by rendering all reflective and refractive surfaces in a
forward pass. How the reflections and refractions are
blended together to simulate a particular material depends
exclusively on the shader used to render the surface. In
general, the shader samples the reflections and refractions
from the respective ray traced effect buffers and combines
them using any kind of blending effect, usually a Fresnel
reflectance term.
Fig. 18 shows the result of this process, on the left image
shows how glass looks before reflections are applied to it
and on the right shows the glass featuring reflections. Ray
traced refractions were not necessary to simulate
transparency, only traditional blending, because common
glass does not cause a significant refraction effect. Fig. 19
also shows the use of ray traced reflections to simulate
highly reflective materials.

Fig. 18: Using ray traced reflections to simulate glass

Fig. 19: Using ray traced reflections to simulate mirror materials

The main limitation of our ray tracing system is its
inability to handle dynamic geometry because is too
expensive to update the kd-tree in real-time. A possible
solution to this problem could be the use of a second
acceleration structure dedicated exclusively to dynamic
geometry, like a BVH tree. This has already been done in
the past and proven to be efficient enough [6] [14].
Another important limitation is the fact that the ray tracer
cannot generate recursive effects. Therefore, only primary
reflections and refractions are supported, which can
become noticeable in some situations like the one in Fig.
20, where the reflection on the door shows the window on
the right as an opaque object. In practice, this is not a
major drawback since higher order reflections and

refractions are not very common in the real world nor very
relevant in visual terms.

Fig. 20: Limitations of non recursive ray tracing

10. Scheduling

An important advantage brought by the fact that ray
tracing is performed on the CPU is that it can be processed
while the GPU is busy rendering the other lighting
components, thus amortizing the performance impact of
ray tracing.
Obtaining a good parallelism between the CPU and the
GPU requires a careful planning of the whole rendering
process because the rendering processes of the CPU and
the GPU are dependent on each other. In particular, this
interdependency is caused by the two synchronization
events where the CPU and GPU transfer data to each other:
the transfer of the ray casting buffer to system memory
and the upload of the ray traced G-buffers to video
memory.
Each of these transfers forces a pipeline flush that stalls
the CPU until all pending rendering commands have been
processed by the GPU. Hence, achieving a good parallelism
requires a careful placement of these transfer events to
minimize the stalling effect and so the scheduling of the
engine was designed to perform the rendering as follows:

 The first rendering operation performed by the engine
is the ray casting process. The idea is to generate and
transfer the ray casting buffer as soon as possible,
before the GPU is commanded to perform any other
expensive rendering operations which could make the
CPU stall an unnecessary long time.

 Then, the CPU issues the commands that will render
both direct and direct lighting on the GPU. Issuing
these commands does not cause any performance
impact on the CPU side since they return immediately.

 Once the GPU is busy processing the other lighting
components, the CPU starts the ray tracing process
that fills the ray traced G-buffers with data. At this
point, both the CPU and the GPU are running
completely in parallel performing the most expensive
rendering operations of the lighting solution.

 The engine must then wait for the CPU to complete the
ray tracing process by waiting for all ray tracing

threads to finish. Once they do, the ray traced G-buffers
are transferred to the GPU.

 After the ray traced G-buffers have been uploaded, the
CPU issues rendering commands to perform their
lighting and to combine them with the rest of the
scene lighting.

Fig. 21 shows a graphical view of this scheduling as a time
line. Notice how a good deal of processing time is spent in
parallel processing by the CPU and the GPU.

CPU

GPU

Ray Casting
Visible Scene

Lighting
Reflected Scene

Lighting
Refracted

Scene Lighting

Ray Tracing

SYNCHRONIZATION:
Ray Casting Buffer

Transfer

SYNCHRONIZATION:
Ray Traced G-Buffers

Transfer

Lighting
Combining

Fig. 21: Scheduling of the rendering

Results and Discussion

In general, the lighting solution we presented can provide
realistic illumination effects for both outdoor and indoor
environments. In the case of outdoors, this realism is
mainly due to our new sky lighting technique; see Fig. 22.
For indoor environments, the light propagation volumes
presented the most important contribute to the lighting
due to their capability for generating both diffuse and
glossy reflections; Fig. 23.
The ray traced illumination proven to be very useful for
both indoor and outdoor environments, particularly for
generating reflections; see Fig. 23. On the other hand,
although the engine trivially supports refractions, in
practice they are rarely useful.

Fig. 22: Rendering of outdoor environment

Fig. 23: Rendering of indoor environment

Even though ray traced effects are very performance
expensive, in practice they do not have a dramatic impact
on performance because they are only generated for the
areas of the image where they are needed.
Fig. 24 represents a typical case scenario of this fact. To
demonstrate the performance of the engine in this
situation, we measured the time taken to render this frame
and the corresponding timings of processing each lighting
step are provided in Table 1. For this measurement we did
not account for the time taken to generate the sky lighting
volume for the total frame time since this step is excluded
from rendering as soon as the volume is completely built.
Notice that the total frame time (42.6 ms) is much lower
than the sum of the individual timings (65.1 ms - not
counting with sky lighting update) because the engine
performs the CPU ray tracing process in parallel to the
previous lighting steps that are processed on the GPU. To
demonstrate the benefits of this parallelism, we modified
this experiment to force lighting to execute in serial
instead. In this situation, the total frame time increased to
68 milliseconds, which is very similar to the sum of the
individual timings, and amounted to an increase of 26
milliseconds in comparison to parallel processing which
reduced the frame rate from 23 to only 14 frames per
second.

Fig. 24: Typical usage scenario

Lighting Process
Duration

(ms)

Auxiliary Steps

Light Propagation Volumes Update (3 cascades) 5.0

Main Lighting

Direct Lighting (Phong + CSM + PCSS) 6.5

Sky Lighting 2.4

Light Propagation Volumes Rendering (diffuse + glossy

reflections)
6.8

Screen Space Ambient Occlusion 6.0

Ray Traced Reflections

CPU Ray Tracing 36

Direct Lighting (Phong + OSM + PCSS) 0.8

Sky Lighting 0.6

Light Propagation Volumes Rendering (diffuse + glossy

reflections)
1.0

Total Frame Time (without sky lighting update)
42.6

(23 FPS)

Table 1: Timings for rendering the scene

11. Conclusions and Future Work

In this paper, we presented a versatile method for
combining state of the art rasterization techniques with
ray traced effects on current consumer hardware.
Even though this method may not yet be suitable for
current videogames, since it consumes most of the
available processing power from the hardware leaving
insufficient power for other elements that compose a
videogame, the fact that i t runs in real-time suggests that it
may become suitable in the near future.
However, before that happens several limitations should
be overcome. To begin with, the ray tracing system should
be improved to support dynamic geometry and to increase
the range of materials supported. The sky lighting
irradiance volume must also be improved to handle
arbitrarily sized scenes by following the camera like a light
propagation volume. Currently the volume is fixed because
it takes about one second to generate it, which makes it
difficult to account for sudden changes in the camera
position.

12. References

[1] Anton Kaplanyan, "Light Pro pagation Volumes in
CryEngine 3" Advances in Real-Time Rendering in 3D
Graphics and Games Course – SIGGRAPH, 2009.

[2] Anton Kaplanyan and Carsten Dachsbacher,
"Cascaded Light Propagation Volumes for Real-Time
Indirect Illumination" Proceeding sof the 2010
Symposium on Interactive 3D Graphics and Games ,
2010.

[3] Alexander Keller, "Instant Radiosity" Proceedings of

the 24th annual conference on Computer graphics and
interactive techniques , pp. 49 - 56, 1997.

[4] Ingo Wald, "Realtime Ray Tracing and Interactive
Global Illumination".

[5] Daniel Pohl, "Quake Wars Gets Ray Traced" 2009.

[6] Jacco Bikker, "Real-time Ray Tracing through the Eyes
of a Game Developer" Proceedings of the 2007 IEEE
Symposium on Interactive Ray Tracing , 2007.

[7] Erik Reinhard, Michael Stark, Peter Shirl ey, and James
Ferwerda, "Photographic Tone Reproduction for
Digital Images" ACM Transactions on Graphics-
Proceedings of ACM SIGGRAPH, vol. 21, no. 3, pp. 267 -
276, 2002.

[8] Ralf Stokholm Nielsen, "Real Time Rendering of
Atmospheric Scattering Effects for Flight Simul ators"
2003.

[9] Sean O'Neil, "Accurate Atmospheric Scattering" GPU
Gems 2, 2005.

[10] Randima Fernando, "Percentage-Closer Soft
Shadows" International Conference on Computer
Graphics and Interactive Techniques , 2005.

[11] Rouslan Dimitrov, "Cascaded Shadow Maps".

[12] Natalya Tatarchuk, "Irradiance Volumes for Games"
Game Developers Conference Europe, 2005.

[13] Gene Greger, "The Irradiance Volume" 1996.

[14] Stephan Reiter, "Real–time Ray Tracing of Dynamic
Scenes" 2008.

