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Abstract 

This paper introduces a 3D rendering engine that 
combines rasterization and ray tracing techniques to 
approximate global illumination in real-time. Namely, 
direct and indirect diffuse illumination are generated with 
state of the art illumination techniques processed on the 
GPU, including a new sky lighting technique that we 
propose to simulate realistic ambient lighting for outdoor 
environments. The illumination is then complemented 
with realistic refl ections and refractions generated by an 
hybrid real -time ray-tracer that performs the ray tracing 
step on the CPU and the lighting on the GPU.  
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1. Introduction 

Achieving realistic illumination in real-time is a 
particularly desirable feature for applications like 
videogames. However, achieving this goal is difficult 
because global illumination remains too complex for real-
time rendering. For this reason, dynamic illumination in 
videogames is still almost exclusively generated with local-
illumination models processed as rasterization on the GPU.  

Recently, several techniques were developed to 
approximate global illumination effects on the GPU. In 
general, the idea behind these techniques is the adaptation 
of classical global illumination algori thms to make them 
execute as rasterization processes on the GPU.  
On the other hand, global illumination effects like sharp 
reflections are difficult to obtain using rasterization 
rendering. In these cases, ray tracing is much better suited.  
 
In this paper we introduce a rendering engine called 
Serenity, that combines state of the art rasterization and 
ray tracing illumination techniques to approximate global  
illumination. Additionally, we also present and employ a 
new sky lighting technique that provides realistic ambient 
lighting for outdoor environments. 
The idea behind the engine is that very advanced and 
useful illumination techniques al ready exist for simulating 
lighting, each one with their own advantages and 
drawbacks, and which could be combined to overcome 
each other limitations. 
For instance, the current local illumination models and 
shadowing mapping techniques are very well suited for 
simulating direct lighting effects and can even match the 
realism of direct lighting generated by production 
renderers. On the other hand, techniques like the light 
propagation volumes and screen space ambient occlusion  
can approximate indirect lighting effects very efficiently on 
the GPU. 



 

Ray tracing can also be used to generate reflections and 
refractions effects exclusively for the surfaces where they  
are needed. The problem is that combining ray tracing 
with the other rasterization based effects is not trivial due 
to the differences  between the two rendering techniques.  
The solution we propose for this problem consists in using 
deferred rendering as a unification method for the two 
techniques.  
 

2. Previous Work 

Local Illumination In computer graphics, the BRDFs of 
the most common reflective materials are often 
approximated using analytic local illumination models like 
the Phong and Oren-Nayar models. Due to their efficiency  
and quality, local-illumination models became extensively 
used to generate dynamic illumination in real-time, even 
though they only provide a rough approximation to 
lighting. 
 
Real-time Global Illumination Some of the most 
advanced and realistic lighting techniques currently used 
in real-time were achieved by adapting classical global-
illumination algorithms to allow them to execute on the 
GPU. For instance, a recently proposed technique called 
light propagation volumes [1] [2], approximates the instant 
radiosity technique [2] on the GPU using a discretization of 
the scene lighting to detach the light count from the 
rendering compl exity. Ray tracing also had a particular 
strong influence on the development of other innovative 
techniques that are already extensively used in 
videogames, like screen space ambient occlusion, screen 
space global illumination, depth-of-field, atmospheric  
scattering, etc.  
 
Real-time Ray Tracing In recent years, the field of real-
time ray tracing has been subject to enormous attention 
and research. Ingo Wald presented an important 
contribution to this field in his PhD thesis which laid the 
foundations for real-time ray tracing and which remains  
one of the main references in this field [4]. From this point 
on, several real-time ray tracers appeared, namely the 
adaptations made by Daniel Pohl to the Quake series  
videogames to replace their rasterization based graphics  
by ray traced ones [5]. And more recently, Jacco Bikker 
also developed a real-time ray tracing engine that was  
already used  to create several academic videogames [6]. 
 

3. Lighting Architecture 

The illumination is split by the engine into three main 
components : direct illumination, indirect diffuse 
illumination and ray traced illumination; see Fig. 1. 
The direct illumination component is processed 
completely on the GPU using the phong illumination model  
and shadow mapping techniques. Indirect illumination is  
also processed on the GPU using three different 
techniques:  the proposed sky lighting technique, light 
propagation volumes  and screen space ambient occlusion.  
The sky lighting and light propagation volumes techniques  
are described in separate in this document.  

On the other hand, ray traced illumination is first 
processed on the CPU, where ray tracing is performed to 
find which portions of the scene are visible through a 
reflection and/or refraction, the result of this process is a 
G-buffer that is then sent to the GPU for lighting. The 
lighting of the ray traced effects is performed using the 
same direct and indirect lighting components used to 
render the scene. The purpose of this method is to 
maintain all the lighting processing on the GPU, even for 
ray traced effects, to keep it fast and ensure visual  
coherency.  
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Fig. 1: Lighting architecture 
 

4. High Dynamic Range and Linear Space 
Lighting 

High dynamic range is a crucial feature of the Serenity  
engine because most of its lighting comes from natural  
light sources, like the sun and the sky, which can vary from 
very bright day light conditions to very dark night time.  
Therefore, it is important to accurately represent this wide 
range of illumination conditions in order to achieve 
realistic lighting. Our approach to high dynamic range is  



 

trivial so we will not delve into its details. In essence, all 
the lighting is processed and stored in high precision 
buffers and then outputted to the screen using the 
Reinhard tone mapping operator [7].  
 
Another important requirement for generating physically 
correct lighting is to ensure that the lighting is processed 
in linear space. This is important because when simul ating 
lighting in computer graphics there are several subtleties  
that turn it into a non linear process and which must be 
considered.  
Namely, when an image is displayed in a typical monitor 
the color is transformed to non linear space, following a 
function called a gamma curve. To counter this effect, the 
image must be transformed by the inverse of the gamma  
curve before being displayed, known as called gamma 
correction. Moreover, the textures that are used for 
rendering are also encoded with gamma correc tion and 
therefore in non linear space which also turns lighting into 
a non linear process because the textures are used to 
represent the albedo of surfaces.  
Therefore, to generate lighting in linear space it is 
necessary to perform two steps: at loading time all albedo 
textures must be converted to linear space and every  
rendered image must be gamma corrected before being 
outputted to the screen. Current graphics rendering 
hardware and APIs already provide the required 
functionality to do this, by allowing loading textures in 
sRGB space and converting output color to sRGB space,  
which makes this process straightforward. The result is  
depicted in Fig. 2, where it is shown a comparison between 
non linear and linear lighting.  
 

 
 

Fig. 2: Non linear vs linear space lighting 

 
5. Atmospheric Scattering 

The atmosphere has an important influence on earth's  
illumination which should be considered in order to obtain 
realistic lighting when rendering outdoor environments.  
In the Serenity engine, the atmosphere affects three points  
of the rendering:  

 the scattered sun light originates the sky  
 the color of the direct sun light varies with the amount 

of light that is scattered away by the atmopshere 

 the sky acts as a secondary light source of the scene,  
known as sky lighting 

To simulate these effects, we employ a real-time 
atmospheric model that generates atmospheric scattering 
effects for clear sky conditions completely on the GPU [8]  
[9].  
Despite running in real -time, this model is computationally 
expensive, so to reduce its impact on performance we 
assume that the sky depends only on the time of day  

(atmospheric conditions are ignored because the model is 
limited to clear sky) which allows to generate the sky once 
and store it for future use. This way, the atmospheric  
scattering simulation only has to be performed again to 
update the sky conditions when the time of day changes  
significantly. 
The storage of this process is performed  by mapping the 
sky dome onto a 2D surface, using paraboloid mapping to 
preserve the details near the horizon, and rendering the 
atmospheric scattering simulation to a texture called the 
sky map. Since the sky color varies so smoothly, a 256x256 
texture is usually enough to capture and store the sky  
color accurately; see Fig. 3. Once generated, the sky map  
texture can then be applied to the sky dome to provide 
color to the sky or used as a data source for the sky 
lighting effect.  
 

 
 

Fig. 3: Example of a sky map 
 

6. Direct Lighting 

Direct lighting is simulated by the Serenity Engine using 
the rendering techniques that are currently used by  
videogames to generate dynamic lighting. Namely, this  
lighting is generated with the Phong illumination model  
combined with shadow mapping. 
The main difference is that we use the percentage-closer 
soft shadows  (PCSS) [7] which is a shadow mapping 
technique that provides more realism than other 
techniques since it generates soft shadows with variable 
penumbra width. To demonstrate the contribution of this  
technique, Fig. 4 shows a comparison between different 
shadow mapping techniques, starting by sharp shadows 
on the left, fixed penumbra width shadows on the middle,  
and variabl e penumbra width shadows achieved through 
the PCSS technique on the right. 
 

 
 

Fig. 4: Comparison between shadow mapping techniques 
 
Special attention was given to simulate the sun accurately  
because it is the main light source in the real world. The 
most important aspect of our simulation is that the color of 
sun light is calculated using the engine's atmospheric  



 

scattering model to simulate the amount of scattering and 
absorption that the light suffers before it reaches the earth.  
This allows for the color to vary in a very realistic way  
when simulating changes in the time of day. 
Additionally, shadows are also generated for this light 
source by combining the cascaded shadow mapping  
technique [8] with the percentage-closer soft shadows that 
were previously mentioned.  
Fig. 5 shows the result of direct lighting; notice that no 
constant ambient term was used due to the fact that 
indirect lighting will be added afterwards by the sky  
lighting and light propagation volumes techniques. 
 

 
 

Fig. 5: Direct lighting 

 

7. Sky Lighting 

When rendering outdoor scenes or indoor scenes with 
access to outdoors (e.g. open doors or windows), it is 
important to simulate the illumination that comes from the 
sky. This kind of illumination is particularly noticeable in 
shadowed areas, since the light that reaches them comes 
almost exclusively from the sky.  
In real-time rendering, this illumination is often faked by  
giving a blue tone (or any other color depending on the sky  
conditions) to the constant ambient lighting term, which is  
both physically and visually inaccurate. 
To simulate this lighting in a more accurate way, we 
propose a new technique that runs completely on the GPU,  
called sky lighting irradiance volume. This technique 
generates an irradiance volume of the sky lighting that 
reaches the scene while taking into account the blocking of 
light caused by large objects. The volume is then used for 
rendering the scene, by sampling it per pixel to obtain 
interpolated irradiance of the scene.  
 
The idea behind the use of an irradiance volume [9] [10] to 
represent sky lighting is the fact that sky lighting is in 
general a smooth effect, which means that it can be 
processed at a reduced resolution and interpolated as  
needed.  
Hence, the irradiance volume represents a set of evenly  
distributed points on the scene where the irradiance is  
calculated. We follow the ideas of the light propagation 
volumes  and represent the irradiance volume with  3D  
textures to allow the volume to be easily generated and 
sampled on the GPU.  
The irradianc e at each point is stored as 3-band spherical  
harmonics, to represent colored irradiance 3 spherical  
harmonics are used for each point, which amounts to 27 

spherical harmonics coefficients for. The storage of these 
coefficients is distributed by six RGBA textures and one 
RGB texture, which amounts to the necessary 27 texture 
color components per point needed for the storage.  
 
Since sky lighting is a smooth effect, the details of the 
occluders that block sky light are not very relevant, hence 
their shapes can be represented by bounding shapes.  
To make the ray intersection tests perform efficiently on 
the GPU, we support a single and simple bounding shape 
called occlusion quad. The occlusion quad shape was  
designed with the purpose of providing an occluder 
representation versatile enough for most scenes that 
would also be efficient to test for intersections on the GPU.  
Fig. 6 shows that the occlusion quad is simply a plane 
defined by a center position, two vectors that point toward 
its up and right sides, and two scalars that represent the  
length of each vector. This simple parameterization allows 
the use of a simple intersection test routine that requires  
few calculations and conditionals which is important to 
obtain good performance on the GPU.  
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Fig. 6: Occlusion quad layout 

 
Although being limited to pl anes may seem too restrictive,  
in practice they are quite versatile in representing most of 
the l arge occluders seen on videogames since these tend to 
be buildings or any other kind of fairly geometric objects.  
Fig. 7 shows the placement of occlusion quads in the 
reference scene. On the left it is shown an editor view of 
the scene and on the right it is showed the corresponding 
occlusion quads. Their main limitation is the fact that it is  
difficult to make them fit i rregular geometry like terrain.  
 

 
 

Fig. 7: Editing occlusion quads 

 
The process of generating the irradiance volume  is done 
layer by layer, where each layer is generated separately  
and where each processed pixel represents an irradiance 
point. At each point, the irradiance is calculated by  



 

sampling the sky color from the sky map using a quasi  
Monte Carlo method and pro jecting each sample to the 
spherical harmonics basis. For each sample, this process  
works as follows: 

 A ray is created that starts  from the position of the 
irradiance point in world space coordinates and points  
in the sample direction.  

 The ray is then checked for intersection against the 
occlusion quads. If no intersection is found then the sky 
map texture is sampl ed to obtain the sky color/light 
that comes from that direction and this color is 
projected onto the spherical harmonic irradiance of 
the point.  

 To finish, the spherical harmonic coefficients are 
outputted for storage on the textures that compose the 
irradiance volume.  
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The sky map has an important rol e in this process because 
it avoids performing repeated expensive evaluations of the 
atmospheric scattering model.  
Nevertheless, sky lighting remains too expensive to 
compute in real-time. Therefore, we distribute the 
processing across several frames which is straightforward 
to do since the processing of the volume is al ready  
performed on a per layer basis. Hence, all that must be 
done is to define how many layers should be generated per 
frame.  
In general, generating a single layer per frame provides a 
good compromise between the overall time needed to 
update the whole volume and its impact on the duration of 
the frame.  For the 32x16x23 irradiance volume  used for 
the reference scene, which is composed by 16 layers, the 
whole volume is computed in only 16 frames without a 
dramatic impact on the frame rate. 

 

Fig. 8 shows the contribution of the proposed sky lighting 
technique in comparison to the use of a constant ambient 
term. Notice how the constant ambient term makes the 
scene look flat while the sky lighting effect preserves the 
shapes of the objects and provides realistic lighting 
because each wall receives lighting from different parts of 
the sky.  
 

 
 

Fig. 8: Comparison between sky lighting (top) and constant 
ambient term (bottom) 

 
The fact that the sky lighting irradiance volume is  
generated dynamically allows for dynamic time of day  
changes. This is depicted in Fig. 9, which shows the 
changes of day illumination, starting by a morning sunrise,  
followed by noon and finished by an afternoon sunset. All 
these changes were computed almost instantaneously.  
 

 
 

Fig. 9: Time of day changes with sky lighting 
 

8. Light Propagation Volumes 

One of the most important global illumination effects, that 
is required to achieve visual realism, is the inter-reflection 
of diffuse lighting between surfaces. Simul ating this kind of 
lighting is usually too expensive for real-time rendering.  
However, a recently proposed technique, called light 
propagation volumes, provides a very efficient 
approximation of this kind of lighting that runs completely  
on the GPU.  
This technique was implemented in the Serenity engine 
and provided excellent resul ts. As depicted in Fig.  10, the 
technique can provide very realistic lighting, particularly  
for interiors. Moreover, the light propagation volumes can 
also provide glossy reflections which is a very useful  
feature that increased the range of materials that can be 
rendered by the engine.  
 



 

 
 

Fig. 10: Contribution of the light propagation volumes 
 
This technique also proven to be a useful complement to our sky 

lighting technique. Since sky lighting comes exclusively from 
above, surfaces that are oriented downwards tend to become too 

dark because they cannot receive sky lighting. However, in the 
real world these surfaces are rarely dark because they are also lit 
by light reflected from nearby surfaces. Hence, to obtain realistic 
lighting it is necessary to inject the reflected sky lighting into the 
light propagation volumes. This is done by using the G-buffer as a 

reflective shadow map to generate a set of sky lighting VPLs 
which are then injected. The result of this process is depicted in 

 Fig. 11 where on the left it is shown how outdoor lighting 
looks when only sky lighting is used, and on the right it is  
show the result of combining sky lighting with light 
propagation volumes. 
 

 
 

Fig. 11: Using light propagation volumes to complement sky 

lighting. 
 

9. Ray Traced Illumination 

The lighting components presented so far focused on 
providing only diffuse global illumination. Even though the 
light propagation volumes can also provide glossy 
reflections, the proposed solution still lacks the support 
for sharp reflections and refractions that are important to 
simulate many manmade materials like glass and polished 
metal, and also natural effects like water.  
Even though these effects can be approximated with 
rasterization based techniques on the GPU, these are not 
versatile enough to fi t every possible situation. Therefore,  
the ray tracing algorithm was integrated into the Serenity  
engine to take advantage of its superio r versatility for 
generating accurate reflections and refractions effects for 
almost every possible situation.  
However, ray tracing is very different from rasterization 
and much more performance expensive, hence the 
challenge is to make ray traced illumination to run in real-

time and to integrate it seamlessly with the rest of the 
lighting. 
The solution we propose for this problem assumes that it 
is possible to render the scene from any view with 
deferred rendering, whether the scene is viewed directly  
or from a reflection/refraction, as long as there is a G-
buffer filled with the necessary attributes of the scene.  
The main difference from classic deferred rendering is that 
the G-buffer is not filled by a rasterization process but by a 
ray tracing one. Hence, the purpose of the ray tracer is 
solely to simulate the paths of reflected and refracted view 
rays and to obtain the scene attributes at their 
intersections with the scene.  
 
Although GPU ray tracing is becoming increasingly  
available, we opted to perform ray  tracing on the CPU 
instead. This is due to the fact that the GPU is al ready  
extensively used by the engine to process the other 
lighting components while the CPU spends most of the 
time idling, waiting for the GPU to finish processing.  
Hence,  we opted to take advantage of this underused 
processing power to generate the ray traced lighting in 
parallel while the GPU processes the other lighting 
components. Moreover, implementing ray tracing for the 
CPU is much more straightforward than for the GPU and 
has already been proven to be suitable for videogames 
while GPU ray tracing has not.  
 
The core of the ray tracer is highly based on Wald's work  
[4]. The scene geometry is partitioned and stored in a kd -
tree that is built using the Surface Area Heuristic to 
optimize the split positions. The main disadvantage of 
using kd-trees is that they are difficult to update in real-
time so our ray tracing implementation becomes limited to 
static geometry. 
Besides the geometry, the ray tracer also needs access to 
the textures that define the materials properties of the 
surfaces which is done by loading the textures to system 
memory. T his requires special care because as stated in 
the "High Dynamic Range and Linear Space Lighting" 
section, all textures that represent the albedo of surfaces  
must be converted from sRGB space to linear space to 
allow lighting to be processed in linear space. Since there 
is no automatic conversion available like when loading 
them to the GPU, the conversion must be performed 
manually. Additionally, mipmap levels are also generated 
for each texture to allow sampling from them with 
mipmap filtering.  
 
The first step in our ray traced lighting technique is to 
generate the reflected and refracted view rays that will 
traverse the scene. This is done in the GPU by rendering 
the refl ective/refractive surfaces with a shader that 
calculates the per-pixel view vectors and applies the 
corresponding optical distortions to them. The result of 
this process is stored in a buffer called the ray casting 
buffer that represents the reflection and refraction rays  
that were generated for each pixel and where each ray is  
represented by i ts origin and direction.  However, since 
both reflection and refraction rays share the same origin it 
is only necessary to store it once.  
Fig. 12 shows a rendering of the scene that highlights in 
red the areas where refl ections are required and therefore 
where the ray casting buffer is filled, and Fig. 13 shows the 



 

contents of the corresponding ray casting buffer, where on 
the left it is shown the origins of the rays, on the middle 
the refl ection vectors and on the right the refraction 
vectors.  
 

 

Fig. 12: Areas of the scene where ray tracing is performed 

 

 
 

Fig. 13: Contents of ray casting buffer 
 
The ray casting buffer is then downloaded to system 
memory  to be accessed by the ray tracer. At this point, the 
ray tracer extracts the ray data for each pixel, builds the 
ray and traverses the scene. For each ray that intersects  
the scene, the attributes of the intersected surface are 
extracted from the surfaces material textures and stored 
on G-buffers. The ray tracer uses two distinct G-buffers,  
one for reflections and another for refractions. The 
sampling from textures is performed with mipmapping to 
avoid noise in the final image, using ray differentials to 
calculate the amount of texel compression per pixel.  
Fig. 14 depicts the contents the G -buffer used for 
reflections after being filled by the ray tracer, where on the 
left it is shown i ts color attributes and on the right its  
normal attributes. 
 

 
 

Fig. 14: Contents of ray traced G-buffer 

 
The G-buffers are then uploaded to the GPU so the other 
lighting components can be used to generate the lighting 
for the reflected and refracted views of the scene. This is 
only possible because these components were developed 
as deferred rendering passes to make them fit any kind of 
visualization of the scene represented by a G -buffer.  
Therefore, applying this illumination to a ray traced view 
is only a matter of setting the corresponding ray traced G-
buffer as a data source of the deferred rendering pipeline.  
Instead of outputting the result of this process to the 
screen, the resul t is instead stored in a color buffer, called 
ray traced effect buffer, which allows to perform additional  
operations and provides a more flexible way of combining 
the ray traced lighting with the scene. Fig. 15 shows the 

contents of a ray traced effect buffer used for storing the 
reflection of the scene.  
 

 
 

Fig. 15: Contents of the ray traced effect buffer used for 
reflections 

 
However, in its original state the deferred rendering 
pipeline is not completely well suited for applying lighting 
to ray traced views due to some differences  that must be 
considered between rendering directly and indirectly  
views.  
Namely, the cascaded shadow maps technique is not 
suitable for providing sun light shadows for ray traced 
views because it focus its coverage on the view frustum.  
When reflections and refractions come into pl ay, areas  of 
the scene that are outside the view frustum may become 
visible through those effects but not covered by shadows; 
see Fig. 16.  
To solve this problem, we devised a simplistic solution 
called overlapped shado w maps, which is a generalization 
of the CSM technique that provides omnidirectional  
coverage; depicted in Fig. 17. Although this solution is not 
optimal, since the shadow maps overlap each other 
wasting some of their coverage potential, our experiments  
demonstrated that using only 3 shadow maps with 
512x512 resolution each provides good visual results with 
a minimal impact on performance.  
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Fig. 16: CSM limitation when dealing with reflections 
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Fig. 17: Overlapped Shadow Maps 

 
Another consideration needed when applying lighting to 
ray traced views is that screen space ambient occlusion  
(SSAO) may provide unpredictable results and therefore 



 

must be excluded. This is happens because SSAO relies on 
obtaining data about the scene that surrounds a given 
visible point by sampling neighboring pixels from the G -
buffer. However, this is only valid if the view rays are 
coherent. If the rays are heavily distorted, like when 
looking at a bumpy reflective surface, then the neighbor 
pixels may contain information about points of the scene 
that are unrel ated to the point being processed, which may 
result in visual artifacts.  
 
Combining the ray traced effects with the final image is 
done by rendering all reflective and refractive surfaces in a 
forward pass. How the reflections and refractions are 
blended together to simulate a particular material depends  
exclusively on the shader used to render the surface. In 
general, the shader samples the reflections  and refractions  
from the respective ray traced effect buffers and combines  
them using any kind of blending effect, usually a Fresnel  
reflectance term.  
Fig. 18 shows the result of this process, on the left image 
shows how glass looks before reflections are applied to it 
and on the right shows the glass featuring reflections. Ray  
traced refractions were not necessary to simulate 
transparency, only traditional blending, because common 
glass does not cause a significant refraction effect. Fig. 19 
also shows the use of ray traced reflections to simulate 
highly reflective materials. 
 

 
 

Fig. 18: Using ray traced reflections to simulate glass 
 

 
 

Fig. 19: Using ray traced reflections to simulate mirror materials 
 
The main limitation of our ray tracing system is its  
inability to handle dynamic geometry because is too 
expensive to update the kd-tree in real-time. A possible 
solution to this problem could be the use of a second 
acceleration structure dedicated exclusively to dynamic 
geometry, like a BVH tree. This has already been done in 
the past and proven to be efficient enough [6] [14].  
Another important limitation is the fact that the ray tracer 
cannot generate recursive effects. Therefore, only primary  
reflections and refractions are supported, which can 
become noticeable in some situations like the one in Fig.  
20, where the reflection on the door shows the window on 
the right as an opaque object. In practice, this is not a 
major drawback since higher order reflections and 

refractions are not very common in the real world nor very  
relevant in visual terms. 
 

 
 

Fig. 20: Limitations of non recursive ray tracing 

 

10. Scheduling 

An important advantage brought by the fact that ray  
tracing is performed on the CPU is that it can be processed 
while the GPU is busy rendering the other lighting 
components, thus amortizing the performance impact of 
ray tracing.  
Obtaining a good parallelism between the CPU and the 
GPU requires a careful planning of the whole rendering 
process because the rendering processes of the CPU and 
the GPU are dependent on each other. In particular, this  
interdependency is caused by the two synchronization 
events where the CPU and GPU transfer data to each other: 
the transfer of the ray casting buffer to system memory  
and the upload of the ray traced G-buffers to video 
memory.  
Each of these transfers forces a pipeline flush that stalls 
the CPU until all pending rendering commands have been 
processed by  the GPU. Hence,  achieving a good parallelism 
requires a careful placement of these transfer events to 
minimize the stalling effect and so the scheduling of the 
engine was designed to perform the rendering as follows:  

 The first rendering operation performed by the engine 
is the ray casting process. The idea is to generate and 
transfer the ray casting buffer as soon as possible,  
before the GPU is commanded to perform any other 
expensive rendering operations which could make the 
CPU stall an unnecessary long time.  
 

 Then, the CPU issues the commands that will render 
both direct and direct lighting on the GPU. Issuing 
these commands does not cause any performance 
impact on the CPU side since they return immediately.  
 

 Once the GPU is busy processing the other lighting 
components, the CPU starts the ray tracing process  
that fills the ray traced G-buffers with data. At this  
point, both the CPU and the GPU are running 
completely in parallel performing the most expensive 
rendering operations of the lighting solution.  
 

 The engine must then wait for the CPU to complete the 
ray tracing process by waiting for all ray tracing 



 

threads to finish. Once they do, the ray traced G-buffers  
are transferred to the GPU.  
 

 After the ray traced G-buffers have been uploaded, the 
CPU issues rendering commands to perform their 
lighting and to combine them with the rest of the 
scene lighting. 

 
Fig. 21 shows a graphical view of this scheduling as a time 
line. Notice how a good deal of processing time is spent in 
parallel processing by the CPU and the GPU. 
 

CPU

GPU

Ray Casting
Visible Scene 

Lighting
Reflected Scene 

Lighting
Refracted 

Scene Lighting

Ray Tracing 

SYNCHRONIZATION:
Ray Casting Buffer 

Transfer

SYNCHRONIZATION:
Ray Traced G-Buffers 

Transfer

Lighting 
Combining

 
 

Fig. 21: Scheduling of the rendering 
 

Results and Discussion 
 
In general, the lighting solution we presented can provide 
realistic illumination effects for both outdoor and indoor 
environments. In the case of outdoors, this realism is 
mainly due to our new sky lighting technique; see Fig. 22.  
For indoor environments, the light propagation volumes 
presented the most important contribute to the lighting 
due to their capability for generating both diffuse and 
glossy reflections; Fig. 23.  
The ray traced illumination proven to be very useful for 
both indoor and outdoor environments, particularly for 
generating reflections; see Fig. 23. On the other hand,  
although the engine trivially supports refractions, in 
practice they are rarely useful. 
 

 
 

Fig. 22: Rendering of outdoor environment 

 
 

Fig. 23: Rendering of indoor environment 
 
Even though ray traced effects are very performance 
expensive, in practice they do not have a dramatic impact 
on performance because they are only generated for the 
areas of the image where they are needed.  
Fig. 24 represents a typical case scenario of this fact. To 
demonstrate the performance of the engine in this  
situation, we measured the time taken to render this frame 
and the corresponding timings of processing each lighting 
step are provided in Table 1. For this measurement we did 
not account for the time taken to generate the sky lighting 
volume for the total frame time since this step is excluded 
from rendering as soon as the volume is completely built. 
Notice that the total frame time (42.6 ms) is much lower 
than the sum of the individual timings (65.1 ms - not 
counting with sky lighting update) because the engine 
performs the CPU ray tracing process in parallel to the 
previous lighting steps that are processed on the GPU. To 
demonstrate the benefits of this parallelism, we modified 
this experiment to force lighting to execute in serial  
instead. In this situation, the total frame time increased to 
68 milliseconds, which is very similar to the sum of the 
individual timings, and amounted to an increase of 26 
milliseconds in comparison to parallel processing which 
reduced the frame rate from 23 to only 14 frames per 
second.  
 

 
 

Fig. 24: Typical usage scenario 
 



 

 

Lighting Process 
Duration 

(ms) 

Auxiliary Steps  

Light Propagation Volumes Update (3 cascades) 5.0 

Main Lighting  

Direct Lighting (Phong + CSM + PCSS) 6.5 

Sky Lighting 2.4 

Light Propagation Volumes Rendering (diffuse + glossy 

reflections) 
6.8 

Screen Space Ambient Occlusion 6.0 

Ray Traced Reflections  

CPU Ray Tracing 36 

Direct Lighting (Phong + OSM + PCSS) 0.8 

Sky Lighting 0.6 

Light Propagation Volumes Rendering (diffuse + glossy 

reflections) 
1.0 

Total Frame Time (without sky lighting update) 
42.6 

(23 FPS) 

 
Table 1: Timings for rendering the scene 

 

11. Conclusions and Future Work 

In this paper,  we presented a versatile method for 
combining state of the art rasterization techniques with 
ray traced effects on current consumer hardware.  
Even though this method may not yet be suitable for 
current videogames, since it consumes most of the 
available processing power from the hardware leaving 
insufficient power for other elements that compose a 
videogame, the fact that i t runs in real-time suggests that it 
may become suitable in the near future.  
However, before that happens several limitations should 
be overcome. To begin with,  the ray tracing system should 
be improved to support dynamic geometry and to increase 
the range of materials supported. The sky lighting 
irradiance volume must also be improved to handle 
arbitrarily sized scenes by following the camera like a light 
propagation volume. Currently the volume is fixed because 
it takes about one second to generate it, which makes it 
difficult to account for sudden changes in the camera 
position. 

12. References 

[1] Anton Kaplanyan, "Light Pro pagation Volumes in 
CryEngine 3" Advances in Real-Time Rendering in 3D 
Graphics and Games Course – SIGGRAPH, 2009.  

[2] Anton Kaplanyan and Carsten Dachsbacher, 
"Cascaded Light Propagation Volumes for Real-Time 
Indirect Illumination" Proceeding sof the 2010 
Symposium on Interactive 3D Graphics and Games , 
2010. 

[3] Alexander Keller, "Instant Radiosity" Proceedings of 

the 24th annual conference on Computer graphics and 
interactive techniques , pp. 49 - 56, 1997.  

[4] Ingo Wald, "Realtime Ray Tracing and Interactive 
Global Illumination".  

[5] Daniel Pohl, "Quake Wars Gets Ray Traced" 2009.  

[6] Jacco Bikker, "Real-time Ray Tracing through the Eyes 
of a Game Developer" Proceedings of the 2007 IEEE 
Symposium on Interactive Ray Tracing , 2007. 

[7] Erik Reinhard, Michael Stark, Peter Shirl ey, and James 
Ferwerda, "Photographic Tone Reproduction for 
Digital Images" ACM Transactions on Graphics- 
Proceedings of ACM SIGGRAPH, vol. 21, no. 3, pp. 267 - 
276, 2002.  

[8] Ralf Stokholm Nielsen, "Real Time Rendering of 
Atmospheric Scattering Effects for Flight Simul ators" 
2003. 

[9] Sean O'Neil, "Accurate Atmospheric Scattering" GPU 
Gems 2, 2005.  

[10] Randima Fernando,  "Percentage-Closer Soft 
Shadows" International Conference on Computer 
Graphics and Interactive Techniques , 2005.  

[11] Rouslan Dimitrov, "Cascaded Shadow Maps". 

[12] Natalya Tatarchuk, "Irradiance Volumes for Games" 
Game Developers Conference Europe, 2005.  

[13] Gene Greger, "The Irradiance Volume" 1996. 

[14] Stephan Reiter, "Real–time Ray Tracing of Dynamic 
Scenes" 2008.  

 
 


